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3.7.2 Canonical Ensemble %"w‘w’/"gcs

The partition function for ideal Bose gas and ideal Fermi gas can be written
as

Z = Z exp[—pB(ni€1 + noeg + ...)] (3.135)

So, the average number of particles in a state r is

Z . e—ﬁ(nl51+nzeg+...+n,.er+...
n1,n2, T

& Ty D= (3.136)

Z BAB(nlel+n252+...+n,er+...
n1,N2,-..

or,

< n, >= —{1/(82)}(9Z/de:) = —(1/B)[0(n 2)/De;] (3.187)

The formula (3.136) can be used to derive the mean occupation of the
levels in a quantum gas. But, in order to emphasize the crucial differences
between the Fermi gas, Bose gas (and photon gas) we shall calculate < n, >
directly from its fundamental definition (3.135) which can be reexpressed
as

[{L nr€ "ﬁnre }{L e B(nier+noea+.. . tnrert.. )H
1,12,
L{Zn e —pBn, Er}{an - B(nie1+nzezt...4npert )}]

where the symbol Zm 1, denotes sum over all states except the r-th. Note
that, the allowed values of n, depend on the nature of the particles, i.e.,

whether these are Fermions or Bosons. Moreover, the upper limits of the
n’s in the summations are, in general, correlated because of the condition
>,;ni=DN.

However, the formula (3.135) gets simplified in the case of the photon gas
where each level can accomodate any number of particles and total number
of particles need not be conserved. Then, each of the sums in (3.135) extends
from 0 to oo, independent of each other. Consequently, the second factors
within the brackets in the numerator and denominator cancel each other
and we are left with the simpler expression

r
" Ty Se= |L - nre’ﬁnrerj! / [Z e_'Banrjl
Nr

n-

<N, >=

o0

~a/pere)[ind 3 (e5) "} = amoraema o

=0 *
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ie.,
<y >= [P — 1] (3.138)

which is the Planck distribution for the photon gas.
As we shall demonstrate now, one has to proceed more carefully in the

case of ideal quantum gases where the total number of particles is conserved.
The symbol

(r)
Z(Ny= Y o Paminashe (3.139)

n1,M2,...

denotes the partition function of a system of N particles which are dis-
tributed over all the states except the r-th, i.e., N particles are accounted
for before the remaining sum over the states of the r-th cells are carried out.
eldeal Fermi Gas

Since for Fermions, 0 and 1 are the only two allowed values of n,

0+ePerz,(N-1) . Z(N)
Z(N)+eBerZ (N—1) [ZT(N —1)

But, for AN < N,

< Ty D= 6/851' + 1]‘1

In Z,(N — AN) ~ In Z,(N) — aAN (3.140)
where o = 0(In Z,,)/ON = —p/(kpT). Taking AN = 1, we have
Z (N —1) ~ e Z,(N) (3.141)
and, hence,
< np >= [ 417! (3.142)

which is identical to the equation (3.123).

In the above derivation we have made two assumptions, (i) that o, =
8(ln Z,)/ON = «, independent of r; and (ii) one can truncate the series
in (3.139) after the second term even when AN = 1. We can now derive
conditions required to be satisfied for the validity of these two assumptions.
Since,

Z(N)=Z,(N){1 + g e

taking derivatives of the logarithms of both sides with respect to IV

a=a,— < n, > (0a/ON)
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Therefore, in order that o = ., we must have (8a/0N) < n, >< « and
since < m, >< 1, the required condition to be satisfied is (da/0N) < a,
i.e., if the chemical potential does not change significantly on additing a
particle. This condition is normally satisfied by a macroscopically large
system of ideal Fermi gas. The justification for the assumption (ii) can be
given along the same line as some of the arguments presented in sections
3.3 and 3.4 in the context of classical systems.
eldeal Bose Gas

Since, for Bosons, all the integers 0,1,2,3,.... are allowed values of n,,
with the abbreviation y = exp(—/fe,),

0+ yZ (N —1)+ 2922, (N —2) + 3y°Z (N — 3) + ...
Z(N) + yZ,(N - 1) + y2Z,(N - 2) + y3Z,(N - 3) + ..

< n, >=

e~ (atfer) 4 9p—2(atfer) 4 go—3(atBer) 4

bl

= 1 _+_ 6—(a+ﬁ€r) + 6*2(a+567') —+— 6_3(a+ﬁ67') + e
or,

< np >= [e®HPr — 1] (3.143)

eldeal Boltzmann Gas
For a given set {ni,ns,..}, there are N!/(n;!n,l...) possible ways in
which the N particles can be put into the given single-particle states. So,
in contrast to the equation (3.134) for the partition function for ideal Bose
and fermi gases, the partition function for ideal Boltzmann gas is obtained
from '
T [N1/(nqlngl...)|e~Almeatnzet..)
ni,ne,..
= [N1/(nylngl..))(e7Per )™ (e7Pe)™2...
NLMD e
18,
Z = (e”Pe 4 g—Pea L AN
Therefore, In Z = N In(}, e7#¢) which leads to

< By = Ne—ﬁ“/(z e Per) (3.144)

r

which is identical to classical Maxwell-Boltzmann distribution.

Solve problem 3.23.
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3.7.3 Grand-Canonical Ensemble

Just as in case of canonical ensemble, we can now show that in case of the
grand canonical ensemble,

<n, >= —(1/6)[8(In Zg) /O,

In this ensemble, the derivation of < ny > is the simplest,.
eldeal Fermi Gas

The grand partition function is given by

1
Zg =11 Z e~ Bler—p)nr)

n,=0

or,ln Zg =Y In[l + eﬁ(”"‘f)] and, hence,

< mp B [ePlE=8) o4 311 (3.145)
eldeal Bose Gas
In this case -
Z =T4[ Y Al
=0
ie,ln Zg = -3 In[l — eA¥=<)] and, hence,
<y = [aBler=#) _ 111 (3.146)

Solve problem 3.24 - 3.26.

3.8 Quantum Systems; Density Operator

In quantum mechanics, say, in the Dirac formulation, the completely pre-
pared states are represented by their "ket” vectors |\ >. But, in quantum
statistical mechanics, the preparations are always incomplete and, hence, a
system is not described by a well-defined ket. This situation is the quantum
counterpart of the incomplete knowledge about the micro-states in classical
statistical mechanics, where we do not know in which micro-state the sys-
tem has been prepared. Naturally, just as we assign a probability P, with
each micro-state 7 in classical statistical mechanics, we assign a probability
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o i R e o FEL__SEmT o o (IR o PRE_SICSEIES 0 © © [T SR o
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State | State 2 State 3 State 4 g

Fig. 4.1. The four states of a three-particle system with two single particle states.

large collection of particles. An example is the small amplitude
vibrational modes of a solid. These modes are called phonons.
Another example is the occupation numbers for quantum mechanical
systems composed of non-interacting particles.

In this chapter, we will consider phonons, occupation numbers,
classical ideal gases, and a number of other examples to illustrate
how the factorization method is applied.

. 'l ¢ ‘ .
(juftu«:L( Q/QCQ : j‘y"v h”«—.}(rb@(/{‘L oN '_'é@ VL UOGOZ« VL %{fﬂh S~ el Co L,
4.1 Occupation Numbers / “7 5188

The first step in analyzing any model involves the classification of
microstates. The state of a quantum system can be specified by the
wavefunction for that state, W,(r, r,, ..., ry). Here, W, is the vth
eigensolution to Schrodinger’s equation for an N-particle system. If
the particles are non-interacting (i.e., ideal), then the wavefunction
can be expressed as a symmetrized* product of single particle
wavefunctions. Let us denote these single particle wavefunctions
as @(r), ¢ur),..., ¢{r),.... For a particular state, say v,
W,(n, ..., ry) will be a symmetrized product containing n, particles
with the single particle wavefunction ¢,, n, particles with the
single particle wavefunction ¢,, and so on. These numbers,
ni, Ny, ...,n;,... are called the occupation numbers of the first,
second, . . . jth,... single particle states. If the N particles are
mdlstmgulshable——aa quantum particles are—then a state, v, is
completely  specified by the set of occupation numbers
(n1, ny, ..., n;, .. .) since any more detail would distinguish between
the n; particles in the jth single particle state.

For example, consider three particles (denoted in Fig. 4.1 by
circles) which can exist in one of two single particle states, o and f.
All the possible states for this three-particle system are exhibited in
Fig. 4.1. In terms of occupation numbers, state 1 has n, =0, ng = 3;
state 2 has n, =1, ng =2; and so on. Notice that an occupation
number is a collective variable in the sense that its value depends
upon the instantaneous state of all the particles.

Let us now express the total number of particles and the total

* For Fermi particles, the product is antisymmetric; for Bose particles the product is symmetric.
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energy in terms of the occupation numbers. Let
v=(ny,n,,..., n;, . ..) = vth state.
Then

N,=Y n; = total number of particles in the vth state.
j ,

Let ¢ be the energy of the jth single particle state. Then,

E, =) &n;=energy in the vth state.
j

Particles with half-integer spin obey an exclusion principle*: n; =0
or 1, only. Such particles are called fermions and the statistics
associated with n; =0 or 1 is called Fermi—Dirac statistics.

Particles with integer spin obey Bose-Einstein statistics: n;=
0,1,2,3,.... These particles are called bosons.

4.2 Photon Gas

As an example of how we use occupation numbers, consider the
photon gas—an electromagnetic field in thermal equilibrium with its
container. We want to describe the thermodynamics of this system.
From the quantum theory of the electromagnetic field, it is found
that the Hamiltonian can be written as a sum of terms, each having
the form of a Hamiltonian for a harmonic oscillator of some
frequency. The energy of a harmonic oscillator is nhw (zero point
energy omitted), where n=0,1,2,.... Thus, we are led to the
concept of photons with energy fiw. A state of the free electromag-
netic field is specified by the number n for each of the “oscillators,”
and n can be thought of as the number of photons in a state with
single “‘particle” energy fiw.

Photons obey Bose—Einstein statistics: n =0, 1, 2, . ... The cano-
nical partition function is thus
e_ﬁA = Q — Z e_ﬂE — 2 e—ﬁ(me;+n252+---+n,-5,-+---)’
v ny,ny,..., nj,...

where we have used the occupation number representation of E,,
and denoted #w; by ¢;. Since the exponential factors into independ-

* The requirement that the N-particle wavefunction be an antisymmetric product implies the

exclusion principle.
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ent portions, we have
0=T1|3 eoms]
J n;=0

The term in brackets is just a geometric series, thus

Q(photon gas) = I,_I [1—_—;%}.

From this formula, we can obtain all the properties we want since
Q =e™P4. One quantity that is particularly interesting is the average
value of the occupation number of the Jjth state, (n;). In the
canonical ensemble

Z nle—BEv Z nje—ﬂ(n1€1+"'+nj€j+-")
> e v . ny,ny,...

Z e “BEv Q

o
sis e—ﬁ(n‘el+---+n,-e,~+---)J/Q
[a(_ﬁei) ny,ny,...

_dlngQ
3(—Be;)
Returning to our formula for Q we thus have
0
(n;) = +-—{ —~In(l-e%% }
J a(_ﬁgj) z ( )

I

= e7P4/[1 — ePei]

or
(n;) = [e?% — L

which is called the Planck distribution.

Exercise 4.1 For the photon gas derive a formula for the
correlation function (6n; 8n;) where én,=n; — (n;).

Exercise 4.2* Use the formula for (n;) to show that the
energy density of a photon gas is o7* where o is a
constant, (7*k%/15k%c®). [Hint: You will need to con-
struct a formula for the number of standing wave solutions
to use the wave equation for waves in a three-dimensional
cavity and with frequency between w and w + dw. ]
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